1203 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1203 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| ** $Id: lcode.c,v 2.112 2016/12/22 13:08:50 roberto Exp $
 | |
| ** Code generator for Lua
 | |
| ** See Copyright Notice in lua.h
 | |
| */
 | |
| 
 | |
| #define lcode_c
 | |
| #define LUA_CORE
 | |
| 
 | |
| #include "lcode.h"
 | |
| #include "lprefix.h"
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #include "lua.h"
 | |
| #include "ldebug.h"
 | |
| #include "ldo.h"
 | |
| #include "lgc.h"
 | |
| #include "llex.h"
 | |
| #include "lmem.h"
 | |
| #include "lobject.h"
 | |
| #include "lopcodes.h"
 | |
| #include "lparser.h"
 | |
| #include "lstring.h"
 | |
| #include "ltable.h"
 | |
| #include "lvm.h"
 | |
| 
 | |
| namespace NS_SLUA {
 | |
| 
 | |
| /* Maximum number of registers in a Lua function (must fit in 8 bits) */
 | |
| #define MAXREGS		255
 | |
| 
 | |
| 
 | |
| #define hasjumps(e)	((e)->t != (e)->f)
 | |
| 
 | |
| /*
 | |
| ** If expression is a numeric constant, fills 'v' with its value
 | |
| ** and returns 1. Otherwise, returns 0.
 | |
| */
 | |
| static int tonumeral(const expdesc *e, TValue *v) {
 | |
|   if (hasjumps(e))
 | |
|     return 0;  /* not a numeral */
 | |
|   switch (e->k) {
 | |
|     case VKINT:
 | |
|       if (v) setivalue(v, e->u.ival);
 | |
|       return 1;
 | |
|     case VKFLT:
 | |
|       if (v) setfltvalue(v, e->u.nval);
 | |
|       return 1;
 | |
|     default: return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
 | |
| ** instruction is also OP_LOADNIL and ranges are compatible, adjust
 | |
| ** range of previous instruction instead of emitting a new one. (For
 | |
| ** instance, 'local a; local b' will generate a single opcode.)
 | |
| */
 | |
| void luaK_nil (FuncState *fs, int from, int n) {
 | |
|   Instruction *previous;
 | |
|   int l = from + n - 1;  /* last register to set nil */
 | |
|   if (fs->pc > fs->lasttarget) {  /* no jumps to current position? */
 | |
|     previous = &fs->f->code[fs->pc-1];
 | |
|     if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
 | |
|       int pfrom = GETARG_A(*previous);  /* get previous range */
 | |
|       int pl = pfrom + GETARG_B(*previous);
 | |
|       if ((pfrom <= from && from <= pl + 1) ||
 | |
|           (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
 | |
|         if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
 | |
|         if (pl > l) l = pl;  /* l = max(l, pl) */
 | |
|         SETARG_A(*previous, from);
 | |
|         SETARG_B(*previous, l - from);
 | |
|         return;
 | |
|       }
 | |
|     }  /* else go through */
 | |
|   }
 | |
|   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Gets the destination address of a jump instruction. Used to traverse
 | |
| ** a list of jumps.
 | |
| */
 | |
| static int getjump (FuncState *fs, int pc) {
 | |
|   int offset = GETARG_sBx(fs->f->code[pc]);
 | |
|   if (offset == NO_JUMP)  /* point to itself represents end of list */
 | |
|     return NO_JUMP;  /* end of list */
 | |
|   else
 | |
|     return (pc+1)+offset;  /* turn offset into absolute position */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Fix jump instruction at position 'pc' to jump to 'dest'.
 | |
| ** (Jump addresses are relative in Lua)
 | |
| */
 | |
| static void fixjump (FuncState *fs, int pc, int dest) {
 | |
|   Instruction *jmp = &fs->f->code[pc];
 | |
|   int offset = dest - (pc + 1);
 | |
|   lua_assert(dest != NO_JUMP);
 | |
|   if (abs(offset) > MAXARG_sBx)
 | |
|     luaX_syntaxerror(fs->ls, "control structure too long");
 | |
|   SETARG_sBx(*jmp, offset);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Concatenate jump-list 'l2' into jump-list 'l1'
 | |
| */
 | |
| void luaK_concat (FuncState *fs, int *l1, int l2) {
 | |
|   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
 | |
|   else if (*l1 == NO_JUMP)  /* no original list? */
 | |
|     *l1 = l2;  /* 'l1' points to 'l2' */
 | |
|   else {
 | |
|     int list = *l1;
 | |
|     int next;
 | |
|     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
 | |
|       list = next;
 | |
|     fixjump(fs, list, l2);  /* last element links to 'l2' */
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Create a jump instruction and return its position, so its destination
 | |
| ** can be fixed later (with 'fixjump'). If there are jumps to
 | |
| ** this position (kept in 'jpc'), link them all together so that
 | |
| ** 'patchlistaux' will fix all them directly to the final destination.
 | |
| */
 | |
| int luaK_jump (FuncState *fs) {
 | |
|   int jpc = fs->jpc;  /* save list of jumps to here */
 | |
|   int j;
 | |
|   fs->jpc = NO_JUMP;  /* no more jumps to here */
 | |
|   j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
 | |
|   luaK_concat(fs, &j, jpc);  /* keep them on hold */
 | |
|   return j;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Code a 'return' instruction
 | |
| */
 | |
| void luaK_ret (FuncState *fs, int first, int nret) {
 | |
|   luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Code a "conditional jump", that is, a test or comparison opcode
 | |
| ** followed by a jump. Return jump position.
 | |
| */
 | |
| static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
 | |
|   luaK_codeABC(fs, op, A, B, C);
 | |
|   return luaK_jump(fs);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** returns current 'pc' and marks it as a jump target (to avoid wrong
 | |
| ** optimizations with consecutive instructions not in the same basic block).
 | |
| */
 | |
| int luaK_getlabel (FuncState *fs) {
 | |
|   fs->lasttarget = fs->pc;
 | |
|   return fs->pc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Returns the position of the instruction "controlling" a given
 | |
| ** jump (that is, its condition), or the jump itself if it is
 | |
| ** unconditional.
 | |
| */
 | |
| static Instruction *getjumpcontrol (FuncState *fs, int pc) {
 | |
|   Instruction *pi = &fs->f->code[pc];
 | |
|   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
 | |
|     return pi-1;
 | |
|   else
 | |
|     return pi;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Patch destination register for a TESTSET instruction.
 | |
| ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
 | |
| ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
 | |
| ** register. Otherwise, change instruction to a simple 'TEST' (produces
 | |
| ** no register value)
 | |
| */
 | |
| static int patchtestreg (FuncState *fs, int node, int reg) {
 | |
|   Instruction *i = getjumpcontrol(fs, node);
 | |
|   if (GET_OPCODE(*i) != OP_TESTSET)
 | |
|     return 0;  /* cannot patch other instructions */
 | |
|   if (reg != NO_REG && reg != GETARG_B(*i))
 | |
|     SETARG_A(*i, reg);
 | |
|   else {
 | |
|      /* no register to put value or register already has the value;
 | |
|         change instruction to simple test */
 | |
|     *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Traverse a list of tests ensuring no one produces a value
 | |
| */
 | |
| static void removevalues (FuncState *fs, int list) {
 | |
|   for (; list != NO_JUMP; list = getjump(fs, list))
 | |
|       patchtestreg(fs, list, NO_REG);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Traverse a list of tests, patching their destination address and
 | |
| ** registers: tests producing values jump to 'vtarget' (and put their
 | |
| ** values in 'reg'), other tests jump to 'dtarget'.
 | |
| */
 | |
| static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
 | |
|                           int dtarget) {
 | |
|   while (list != NO_JUMP) {
 | |
|     int next = getjump(fs, list);
 | |
|     if (patchtestreg(fs, list, reg))
 | |
|       fixjump(fs, list, vtarget);
 | |
|     else
 | |
|       fixjump(fs, list, dtarget);  /* jump to default target */
 | |
|     list = next;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensure all pending jumps to current position are fixed (jumping
 | |
| ** to current position with no values) and reset list of pending
 | |
| ** jumps
 | |
| */
 | |
| static void dischargejpc (FuncState *fs) {
 | |
|   patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
 | |
|   fs->jpc = NO_JUMP;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add elements in 'list' to list of pending jumps to "here"
 | |
| ** (current position)
 | |
| */
 | |
| void luaK_patchtohere (FuncState *fs, int list) {
 | |
|   luaK_getlabel(fs);  /* mark "here" as a jump target */
 | |
|   luaK_concat(fs, &fs->jpc, list);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Path all jumps in 'list' to jump to 'target'.
 | |
| ** (The assert means that we cannot fix a jump to a forward address
 | |
| ** because we only know addresses once code is generated.)
 | |
| */
 | |
| void luaK_patchlist (FuncState *fs, int list, int target) {
 | |
|   if (target == fs->pc)  /* 'target' is current position? */
 | |
|     luaK_patchtohere(fs, list);  /* add list to pending jumps */
 | |
|   else {
 | |
|     lua_assert(target < fs->pc);
 | |
|     patchlistaux(fs, list, target, NO_REG, target);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Path all jumps in 'list' to close upvalues up to given 'level'
 | |
| ** (The assertion checks that jumps either were closing nothing
 | |
| ** or were closing higher levels, from inner blocks.)
 | |
| */
 | |
| void luaK_patchclose (FuncState *fs, int list, int level) {
 | |
|   level++;  /* argument is +1 to reserve 0 as non-op */
 | |
|   for (; list != NO_JUMP; list = getjump(fs, list)) {
 | |
|     lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP &&
 | |
|                 (GETARG_A(fs->f->code[list]) == 0 ||
 | |
|                  GETARG_A(fs->f->code[list]) >= level));
 | |
|     SETARG_A(fs->f->code[list], level);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit instruction 'i', checking for array sizes and saving also its
 | |
| ** line information. Return 'i' position.
 | |
| */
 | |
| static int luaK_code (FuncState *fs, Instruction i) {
 | |
|   Proto *f = fs->f;
 | |
|   dischargejpc(fs);  /* 'pc' will change */
 | |
|   /* put new instruction in code array */
 | |
|   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
 | |
|                   MAX_INT, "opcodes");
 | |
|   f->code[fs->pc] = i;
 | |
|   /* save corresponding line information */
 | |
|   luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
 | |
|                   MAX_INT, "opcodes");
 | |
|   f->lineinfo[fs->pc] = fs->ls->lastline;
 | |
|   return fs->pc++;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Format and emit an 'iABC' instruction. (Assertions check consistency
 | |
| ** of parameters versus opcode.)
 | |
| */
 | |
| int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
 | |
|   lua_assert(getOpMode(o) == iABC);
 | |
|   lua_assert(getBMode(o) != OpArgN || b == 0);
 | |
|   lua_assert(getCMode(o) != OpArgN || c == 0);
 | |
|   lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
 | |
|   return luaK_code(fs, CREATE_ABC(o, a, b, c));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Format and emit an 'iABx' instruction.
 | |
| */
 | |
| int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
 | |
|   lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
 | |
|   lua_assert(getCMode(o) == OpArgN);
 | |
|   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
 | |
|   return luaK_code(fs, CREATE_ABx(o, a, bc));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit an "extra argument" instruction (format 'iAx')
 | |
| */
 | |
| static int codeextraarg (FuncState *fs, int a) {
 | |
|   lua_assert(a <= MAXARG_Ax);
 | |
|   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit a "load constant" instruction, using either 'OP_LOADK'
 | |
| ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
 | |
| ** instruction with "extra argument".
 | |
| */
 | |
| int luaK_codek (FuncState *fs, int reg, int k) {
 | |
|   if (k <= MAXARG_Bx)
 | |
|     return luaK_codeABx(fs, OP_LOADK, reg, k);
 | |
|   else {
 | |
|     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
 | |
|     codeextraarg(fs, k);
 | |
|     return p;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Check register-stack level, keeping track of its maximum size
 | |
| ** in field 'maxstacksize'
 | |
| */
 | |
| void luaK_checkstack (FuncState *fs, int n) {
 | |
|   int newstack = fs->freereg + n;
 | |
|   if (newstack > fs->f->maxstacksize) {
 | |
|     if (newstack >= MAXREGS)
 | |
|       luaX_syntaxerror(fs->ls,
 | |
|         "function or expression needs too many registers");
 | |
|     fs->f->maxstacksize = cast_byte(newstack);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Reserve 'n' registers in register stack
 | |
| */
 | |
| void luaK_reserveregs (FuncState *fs, int n) {
 | |
|   luaK_checkstack(fs, n);
 | |
|   fs->freereg += n;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Free register 'reg', if it is neither a constant index nor
 | |
| ** a local variable.
 | |
| )
 | |
| */
 | |
| static void freereg (FuncState *fs, int reg) {
 | |
|   if (!ISK(reg) && reg >= fs->nactvar) {
 | |
|     fs->freereg--;
 | |
|     lua_assert(reg == fs->freereg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Free register used by expression 'e' (if any)
 | |
| */
 | |
| static void freeexp (FuncState *fs, expdesc *e) {
 | |
|   if (e->k == VNONRELOC)
 | |
|     freereg(fs, e->u.info);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
 | |
| ** order.
 | |
| */
 | |
| static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
 | |
|   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
 | |
|   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
 | |
|   if (r1 > r2) {
 | |
|     freereg(fs, r1);
 | |
|     freereg(fs, r2);
 | |
|   }
 | |
|   else {
 | |
|     freereg(fs, r2);
 | |
|     freereg(fs, r1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add constant 'v' to prototype's list of constants (field 'k').
 | |
| ** Use scanner's table to cache position of constants in constant list
 | |
| ** and try to reuse constants. Because some values should not be used
 | |
| ** as keys (nil cannot be a key, integer keys can collapse with float
 | |
| ** keys), the caller must provide a useful 'key' for indexing the cache.
 | |
| */
 | |
| static int addk (FuncState *fs, TValue *key, TValue *v) {
 | |
|   lua_State *L = fs->ls->L;
 | |
|   Proto *f = fs->f;
 | |
|   TValue *idx = luaH_set(L, fs->ls->h, key);  /* index scanner table */
 | |
|   int k, oldsize;
 | |
|   if (ttisinteger(idx)) {  /* is there an index there? */
 | |
|     k = cast_int(ivalue(idx));
 | |
|     /* correct value? (warning: must distinguish floats from integers!) */
 | |
|     if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
 | |
|                       luaV_rawequalobj(&f->k[k], v))
 | |
|       return k;  /* reuse index */
 | |
|   }
 | |
|   /* constant not found; create a new entry */
 | |
|   oldsize = f->sizek;
 | |
|   k = fs->nk;
 | |
|   /* numerical value does not need GC barrier;
 | |
|      table has no metatable, so it does not need to invalidate cache */
 | |
|   setivalue(idx, k);
 | |
|   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
 | |
|   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
 | |
|   setobj(L, &f->k[k], v);
 | |
|   fs->nk++;
 | |
|   luaC_barrier(L, f, v);
 | |
|   return k;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add a string to list of constants and return its index.
 | |
| */
 | |
| int luaK_stringK (FuncState *fs, TString *s) {
 | |
|   TValue o;
 | |
|   setsvalue(fs->ls->L, &o, s);
 | |
|   return addk(fs, &o, &o);  /* use string itself as key */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add an integer to list of constants and return its index.
 | |
| ** Integers use userdata as keys to avoid collision with floats with
 | |
| ** same value; conversion to 'void*' is used only for hashing, so there
 | |
| ** are no "precision" problems.
 | |
| */
 | |
| int luaK_intK (FuncState *fs, lua_Integer n) {
 | |
|   TValue k, o;
 | |
|   setpvalue(&k, cast(void*, cast(size_t, n)));
 | |
|   setivalue(&o, n);
 | |
|   return addk(fs, &k, &o);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a float to list of constants and return its index.
 | |
| */
 | |
| static int luaK_numberK (FuncState *fs, lua_Number r) {
 | |
|   TValue o;
 | |
|   setfltvalue(&o, r);
 | |
|   return addk(fs, &o, &o);  /* use number itself as key */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add a boolean to list of constants and return its index.
 | |
| */
 | |
| static int boolK (FuncState *fs, int b) {
 | |
|   TValue o;
 | |
|   setbvalue(&o, b);
 | |
|   return addk(fs, &o, &o);  /* use boolean itself as key */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add nil to list of constants and return its index.
 | |
| */
 | |
| static int nilK (FuncState *fs) {
 | |
|   TValue k, v;
 | |
|   setnilvalue(&v);
 | |
|   /* cannot use nil as key; instead use table itself to represent nil */
 | |
|   sethvalue(fs->ls->L, &k, fs->ls->h);
 | |
|   return addk(fs, &k, &v);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Fix an expression to return the number of results 'nresults'.
 | |
| ** Either 'e' is a multi-ret expression (function call or vararg)
 | |
| ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
 | |
| */
 | |
| void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
 | |
|   if (e->k == VCALL) {  /* expression is an open function call? */
 | |
|     SETARG_C(getinstruction(fs, e), nresults + 1);
 | |
|   }
 | |
|   else if (e->k == VVARARG) {
 | |
|     Instruction *pc = &getinstruction(fs, e);
 | |
|     SETARG_B(*pc, nresults + 1);
 | |
|     SETARG_A(*pc, fs->freereg);
 | |
|     luaK_reserveregs(fs, 1);
 | |
|   }
 | |
|   else lua_assert(nresults == LUA_MULTRET);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Fix an expression to return one result.
 | |
| ** If expression is not a multi-ret expression (function call or
 | |
| ** vararg), it already returns one result, so nothing needs to be done.
 | |
| ** Function calls become VNONRELOC expressions (as its result comes
 | |
| ** fixed in the base register of the call), while vararg expressions
 | |
| ** become VRELOCABLE (as OP_VARARG puts its results where it wants).
 | |
| ** (Calls are created returning one result, so that does not need
 | |
| ** to be fixed.)
 | |
| */
 | |
| void luaK_setoneret (FuncState *fs, expdesc *e) {
 | |
|   if (e->k == VCALL) {  /* expression is an open function call? */
 | |
|     /* already returns 1 value */
 | |
|     lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
 | |
|     e->k = VNONRELOC;  /* result has fixed position */
 | |
|     e->u.info = GETARG_A(getinstruction(fs, e));
 | |
|   }
 | |
|   else if (e->k == VVARARG) {
 | |
|     SETARG_B(getinstruction(fs, e), 2);
 | |
|     e->k = VRELOCABLE;  /* can relocate its simple result */
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensure that expression 'e' is not a variable.
 | |
| */
 | |
| void luaK_dischargevars (FuncState *fs, expdesc *e) {
 | |
|   switch (e->k) {
 | |
|     case VLOCAL: {  /* already in a register */
 | |
|       e->k = VNONRELOC;  /* becomes a non-relocatable value */
 | |
|       break;
 | |
|     }
 | |
|     case VUPVAL: {  /* move value to some (pending) register */
 | |
|       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
 | |
|       e->k = VRELOCABLE;
 | |
|       break;
 | |
|     }
 | |
|     case VINDEXED: {
 | |
|       OpCode op;
 | |
|       freereg(fs, e->u.ind.idx);
 | |
|       if (e->u.ind.vt == VLOCAL) {  /* is 't' in a register? */
 | |
|         freereg(fs, e->u.ind.t);
 | |
|         op = OP_GETTABLE;
 | |
|       }
 | |
|       else {
 | |
|         lua_assert(e->u.ind.vt == VUPVAL);
 | |
|         op = OP_GETTABUP;  /* 't' is in an upvalue */
 | |
|       }
 | |
|       e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx);
 | |
|       e->k = VRELOCABLE;
 | |
|       break;
 | |
|     }
 | |
|     case VVARARG: case VCALL: {
 | |
|       luaK_setoneret(fs, e);
 | |
|       break;
 | |
|     }
 | |
|     default: break;  /* there is one value available (somewhere) */
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensures expression value is in register 'reg' (and therefore
 | |
| ** 'e' will become a non-relocatable expression).
 | |
| */
 | |
| static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
 | |
|   luaK_dischargevars(fs, e);
 | |
|   switch (e->k) {
 | |
|     case VNIL: {
 | |
|       luaK_nil(fs, reg, 1);
 | |
|       break;
 | |
|     }
 | |
|     case VFALSE: case VTRUE: {
 | |
|       luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
 | |
|       break;
 | |
|     }
 | |
|     case VK: {
 | |
|       luaK_codek(fs, reg, e->u.info);
 | |
|       break;
 | |
|     }
 | |
|     case VKFLT: {
 | |
|       luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
 | |
|       break;
 | |
|     }
 | |
|     case VKINT: {
 | |
|       luaK_codek(fs, reg, luaK_intK(fs, e->u.ival));
 | |
|       break;
 | |
|     }
 | |
|     case VRELOCABLE: {
 | |
|       Instruction *pc = &getinstruction(fs, e);
 | |
|       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
 | |
|       break;
 | |
|     }
 | |
|     case VNONRELOC: {
 | |
|       if (reg != e->u.info)
 | |
|         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       lua_assert(e->k == VJMP);
 | |
|       return;  /* nothing to do... */
 | |
|     }
 | |
|   }
 | |
|   e->u.info = reg;
 | |
|   e->k = VNONRELOC;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensures expression value is in any register.
 | |
| */
 | |
| static void discharge2anyreg (FuncState *fs, expdesc *e) {
 | |
|   if (e->k != VNONRELOC) {  /* no fixed register yet? */
 | |
|     luaK_reserveregs(fs, 1);  /* get a register */
 | |
|     discharge2reg(fs, e, fs->freereg-1);  /* put value there */
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| static int code_loadbool (FuncState *fs, int A, int b, int jump) {
 | |
|   luaK_getlabel(fs);  /* those instructions may be jump targets */
 | |
|   return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** check whether list has any jump that do not produce a value
 | |
| ** or produce an inverted value
 | |
| */
 | |
| static int need_value (FuncState *fs, int list) {
 | |
|   for (; list != NO_JUMP; list = getjump(fs, list)) {
 | |
|     Instruction i = *getjumpcontrol(fs, list);
 | |
|     if (GET_OPCODE(i) != OP_TESTSET) return 1;
 | |
|   }
 | |
|   return 0;  /* not found */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensures final expression result (including results from its jump
 | |
| ** lists) is in register 'reg'.
 | |
| ** If expression has jumps, need to patch these jumps either to
 | |
| ** its final position or to "load" instructions (for those tests
 | |
| ** that do not produce values).
 | |
| */
 | |
| static void exp2reg (FuncState *fs, expdesc *e, int reg) {
 | |
|   discharge2reg(fs, e, reg);
 | |
|   if (e->k == VJMP)  /* expression itself is a test? */
 | |
|     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
 | |
|   if (hasjumps(e)) {
 | |
|     int final;  /* position after whole expression */
 | |
|     int p_f = NO_JUMP;  /* position of an eventual LOAD false */
 | |
|     int p_t = NO_JUMP;  /* position of an eventual LOAD true */
 | |
|     if (need_value(fs, e->t) || need_value(fs, e->f)) {
 | |
|       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
 | |
|       p_f = code_loadbool(fs, reg, 0, 1);
 | |
|       p_t = code_loadbool(fs, reg, 1, 0);
 | |
|       luaK_patchtohere(fs, fj);
 | |
|     }
 | |
|     final = luaK_getlabel(fs);
 | |
|     patchlistaux(fs, e->f, final, reg, p_f);
 | |
|     patchlistaux(fs, e->t, final, reg, p_t);
 | |
|   }
 | |
|   e->f = e->t = NO_JUMP;
 | |
|   e->u.info = reg;
 | |
|   e->k = VNONRELOC;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensures final expression result (including results from its jump
 | |
| ** lists) is in next available register.
 | |
| */
 | |
| void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
 | |
|   luaK_dischargevars(fs, e);
 | |
|   freeexp(fs, e);
 | |
|   luaK_reserveregs(fs, 1);
 | |
|   exp2reg(fs, e, fs->freereg - 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensures final expression result (including results from its jump
 | |
| ** lists) is in some (any) register and return that register.
 | |
| */
 | |
| int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
 | |
|   luaK_dischargevars(fs, e);
 | |
|   if (e->k == VNONRELOC) {  /* expression already has a register? */
 | |
|     if (!hasjumps(e))  /* no jumps? */
 | |
|       return e->u.info;  /* result is already in a register */
 | |
|     if (e->u.info >= fs->nactvar) {  /* reg. is not a local? */
 | |
|       exp2reg(fs, e, e->u.info);  /* put final result in it */
 | |
|       return e->u.info;
 | |
|     }
 | |
|   }
 | |
|   luaK_exp2nextreg(fs, e);  /* otherwise, use next available register */
 | |
|   return e->u.info;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensures final expression result is either in a register or in an
 | |
| ** upvalue.
 | |
| */
 | |
| void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
 | |
|   if (e->k != VUPVAL || hasjumps(e))
 | |
|     luaK_exp2anyreg(fs, e);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensures final expression result is either in a register or it is
 | |
| ** a constant.
 | |
| */
 | |
| void luaK_exp2val (FuncState *fs, expdesc *e) {
 | |
|   if (hasjumps(e))
 | |
|     luaK_exp2anyreg(fs, e);
 | |
|   else
 | |
|     luaK_dischargevars(fs, e);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Ensures final expression result is in a valid R/K index
 | |
| ** (that is, it is either in a register or in 'k' with an index
 | |
| ** in the range of R/K indices).
 | |
| ** Returns R/K index.
 | |
| */
 | |
| int luaK_exp2RK (FuncState *fs, expdesc *e) {
 | |
|   luaK_exp2val(fs, e);
 | |
|   switch (e->k) {  /* move constants to 'k' */
 | |
|     case VTRUE: e->u.info = boolK(fs, 1); goto vk;
 | |
|     case VFALSE: e->u.info = boolK(fs, 0); goto vk;
 | |
|     case VNIL: e->u.info = nilK(fs); goto vk;
 | |
|     case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
 | |
|     case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
 | |
|     case VK:
 | |
|      vk:
 | |
|       e->k = VK;
 | |
|       if (e->u.info <= MAXINDEXRK)  /* constant fits in 'argC'? */
 | |
|         return RKASK(e->u.info);
 | |
|       else break;
 | |
|     default: break;
 | |
|   }
 | |
|   /* not a constant in the right range: put it in a register */
 | |
|   return luaK_exp2anyreg(fs, e);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code to store result of expression 'ex' into variable 'var'.
 | |
| */
 | |
| void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
 | |
|   switch (var->k) {
 | |
|     case VLOCAL: {
 | |
|       freeexp(fs, ex);
 | |
|       exp2reg(fs, ex, var->u.info);  /* compute 'ex' into proper place */
 | |
|       return;
 | |
|     }
 | |
|     case VUPVAL: {
 | |
|       int e = luaK_exp2anyreg(fs, ex);
 | |
|       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
 | |
|       break;
 | |
|     }
 | |
|     case VINDEXED: {
 | |
|       OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP;
 | |
|       int e = luaK_exp2RK(fs, ex);
 | |
|       luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e);
 | |
|       break;
 | |
|     }
 | |
|     default: lua_assert(0);  /* invalid var kind to store */
 | |
|   }
 | |
|   freeexp(fs, ex);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
 | |
| */
 | |
| void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
 | |
|   int ereg;
 | |
|   luaK_exp2anyreg(fs, e);
 | |
|   ereg = e->u.info;  /* register where 'e' was placed */
 | |
|   freeexp(fs, e);
 | |
|   e->u.info = fs->freereg;  /* base register for op_self */
 | |
|   e->k = VNONRELOC;  /* self expression has a fixed register */
 | |
|   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
 | |
|   luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key));
 | |
|   freeexp(fs, key);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Negate condition 'e' (where 'e' is a comparison).
 | |
| */
 | |
| static void negatecondition (FuncState *fs, expdesc *e) {
 | |
|   Instruction *pc = getjumpcontrol(fs, e->u.info);
 | |
|   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
 | |
|                                            GET_OPCODE(*pc) != OP_TEST);
 | |
|   SETARG_A(*pc, !(GETARG_A(*pc)));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
 | |
| ** is true, code will jump if 'e' is true.) Return jump position.
 | |
| ** Optimize when 'e' is 'not' something, inverting the condition
 | |
| ** and removing the 'not'.
 | |
| */
 | |
| static int jumponcond (FuncState *fs, expdesc *e, int cond) {
 | |
|   if (e->k == VRELOCABLE) {
 | |
|     Instruction ie = getinstruction(fs, e);
 | |
|     if (GET_OPCODE(ie) == OP_NOT) {
 | |
|       fs->pc--;  /* remove previous OP_NOT */
 | |
|       return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
 | |
|     }
 | |
|     /* else go through */
 | |
|   }
 | |
|   discharge2anyreg(fs, e);
 | |
|   freeexp(fs, e);
 | |
|   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit code to go through if 'e' is true, jump otherwise.
 | |
| */
 | |
| void luaK_goiftrue (FuncState *fs, expdesc *e) {
 | |
|   int pc;  /* pc of new jump */
 | |
|   luaK_dischargevars(fs, e);
 | |
|   switch (e->k) {
 | |
|     case VJMP: {  /* condition? */
 | |
|       negatecondition(fs, e);  /* jump when it is false */
 | |
|       pc = e->u.info;  /* save jump position */
 | |
|       break;
 | |
|     }
 | |
|     case VK: case VKFLT: case VKINT: case VTRUE: {
 | |
|       pc = NO_JUMP;  /* always true; do nothing */
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       pc = jumponcond(fs, e, 0);  /* jump when false */
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
 | |
|   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
 | |
|   e->t = NO_JUMP;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit code to go through if 'e' is false, jump otherwise.
 | |
| */
 | |
| void luaK_goiffalse (FuncState *fs, expdesc *e) {
 | |
|   int pc;  /* pc of new jump */
 | |
|   luaK_dischargevars(fs, e);
 | |
|   switch (e->k) {
 | |
|     case VJMP: {
 | |
|       pc = e->u.info;  /* already jump if true */
 | |
|       break;
 | |
|     }
 | |
|     case VNIL: case VFALSE: {
 | |
|       pc = NO_JUMP;  /* always false; do nothing */
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       pc = jumponcond(fs, e, 1);  /* jump if true */
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
 | |
|   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
 | |
|   e->f = NO_JUMP;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Code 'not e', doing constant folding.
 | |
| */
 | |
| static void codenot (FuncState *fs, expdesc *e) {
 | |
|   luaK_dischargevars(fs, e);
 | |
|   switch (e->k) {
 | |
|     case VNIL: case VFALSE: {
 | |
|       e->k = VTRUE;  /* true == not nil == not false */
 | |
|       break;
 | |
|     }
 | |
|     case VK: case VKFLT: case VKINT: case VTRUE: {
 | |
|       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
 | |
|       break;
 | |
|     }
 | |
|     case VJMP: {
 | |
|       negatecondition(fs, e);
 | |
|       break;
 | |
|     }
 | |
|     case VRELOCABLE:
 | |
|     case VNONRELOC: {
 | |
|       discharge2anyreg(fs, e);
 | |
|       freeexp(fs, e);
 | |
|       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
 | |
|       e->k = VRELOCABLE;
 | |
|       break;
 | |
|     }
 | |
|     default: lua_assert(0);  /* cannot happen */
 | |
|   }
 | |
|   /* interchange true and false lists */
 | |
|   { int temp = e->f; e->f = e->t; e->t = temp; }
 | |
|   removevalues(fs, e->f);  /* values are useless when negated */
 | |
|   removevalues(fs, e->t);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Create expression 't[k]'. 't' must have its final result already in a
 | |
| ** register or upvalue.
 | |
| */
 | |
| void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
 | |
|   lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
 | |
|   t->u.ind.t = t->u.info;  /* register or upvalue index */
 | |
|   t->u.ind.idx = luaK_exp2RK(fs, k);  /* R/K index for key */
 | |
|   t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL;
 | |
|   t->k = VINDEXED;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return false if folding can raise an error.
 | |
| ** Bitwise operations need operands convertible to integers; division
 | |
| ** operations cannot have 0 as divisor.
 | |
| */
 | |
| static int validop (int op, TValue *v1, TValue *v2) {
 | |
|   switch (op) {
 | |
|     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
 | |
|     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
 | |
|       lua_Integer i;
 | |
|       return (tointeger(v1, &i) && tointeger(v2, &i));
 | |
|     }
 | |
|     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
 | |
|       return (nvalue(v2) != 0);
 | |
|     default: return 1;  /* everything else is valid */
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Try to "constant-fold" an operation; return 1 iff successful.
 | |
| ** (In this case, 'e1' has the final result.)
 | |
| */
 | |
| static int constfolding (FuncState *fs, int op, expdesc *e1,
 | |
|                                                 const expdesc *e2) {
 | |
|   TValue v1, v2, res;
 | |
|   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
 | |
|     return 0;  /* non-numeric operands or not safe to fold */
 | |
|   luaO_arith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
 | |
|   if (ttisinteger(&res)) {
 | |
|     e1->k = VKINT;
 | |
|     e1->u.ival = ivalue(&res);
 | |
|   }
 | |
|   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
 | |
|     lua_Number n = fltvalue(&res);
 | |
|     if (luai_numisnan(n) || n == 0)
 | |
|       return 0;
 | |
|     e1->k = VKFLT;
 | |
|     e1->u.nval = n;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit code for unary expressions that "produce values"
 | |
| ** (everything but 'not').
 | |
| ** Expression to produce final result will be encoded in 'e'.
 | |
| */
 | |
| static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
 | |
|   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
 | |
|   freeexp(fs, e);
 | |
|   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
 | |
|   e->k = VRELOCABLE;  /* all those operations are relocatable */
 | |
|   luaK_fixline(fs, line);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit code for binary expressions that "produce values"
 | |
| ** (everything but logical operators 'and'/'or' and comparison
 | |
| ** operators).
 | |
| ** Expression to produce final result will be encoded in 'e1'.
 | |
| ** Because 'luaK_exp2RK' can free registers, its calls must be
 | |
| ** in "stack order" (that is, first on 'e2', which may have more
 | |
| ** recent registers to be released).
 | |
| */
 | |
| static void codebinexpval (FuncState *fs, OpCode op,
 | |
|                            expdesc *e1, expdesc *e2, int line) {
 | |
|   int rk2 = luaK_exp2RK(fs, e2);  /* both operands are "RK" */
 | |
|   int rk1 = luaK_exp2RK(fs, e1);
 | |
|   freeexps(fs, e1, e2);
 | |
|   e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2);  /* generate opcode */
 | |
|   e1->k = VRELOCABLE;  /* all those operations are relocatable */
 | |
|   luaK_fixline(fs, line);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit code for comparisons.
 | |
| ** 'e1' was already put in R/K form by 'luaK_infix'.
 | |
| */
 | |
| static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
 | |
|   int rk1 = (e1->k == VK) ? RKASK(e1->u.info)
 | |
|                           : check_exp(e1->k == VNONRELOC, e1->u.info);
 | |
|   int rk2 = luaK_exp2RK(fs, e2);
 | |
|   freeexps(fs, e1, e2);
 | |
|   switch (opr) {
 | |
|     case OPR_NE: {  /* '(a ~= b)' ==> 'not (a == b)' */
 | |
|       e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2);
 | |
|       break;
 | |
|     }
 | |
|     case OPR_GT: case OPR_GE: {
 | |
|       /* '(a > b)' ==> '(b < a)';  '(a >= b)' ==> '(b <= a)' */
 | |
|       OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
 | |
|       e1->u.info = condjump(fs, op, 1, rk2, rk1);  /* invert operands */
 | |
|       break;
 | |
|     }
 | |
|     default: {  /* '==', '<', '<=' use their own opcodes */
 | |
|       OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
 | |
|       e1->u.info = condjump(fs, op, 1, rk1, rk2);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   e1->k = VJMP;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Aplly prefix operation 'op' to expression 'e'.
 | |
| */
 | |
| void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
 | |
|   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
 | |
|   switch (op) {
 | |
|     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
 | |
|       if (constfolding(fs, op + LUA_OPUNM, e, &ef))
 | |
|         break;
 | |
|       /* FALLTHROUGH */
 | |
|     case OPR_LEN:
 | |
|       codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
 | |
|       break;
 | |
|     case OPR_NOT: codenot(fs, e); break;
 | |
|     default: lua_assert(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Process 1st operand 'v' of binary operation 'op' before reading
 | |
| ** 2nd operand.
 | |
| */
 | |
| void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
 | |
|   switch (op) {
 | |
|     case OPR_AND: {
 | |
|       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
 | |
|       break;
 | |
|     }
 | |
|     case OPR_OR: {
 | |
|       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
 | |
|       break;
 | |
|     }
 | |
|     case OPR_CONCAT: {
 | |
|       luaK_exp2nextreg(fs, v);  /* operand must be on the 'stack' */
 | |
|       break;
 | |
|     }
 | |
|     case OPR_ADD: case OPR_SUB:
 | |
|     case OPR_MUL: case OPR_DIV: case OPR_IDIV:
 | |
|     case OPR_MOD: case OPR_POW:
 | |
|     case OPR_BAND: case OPR_BOR: case OPR_BXOR:
 | |
|     case OPR_SHL: case OPR_SHR: {
 | |
|       if (!tonumeral(v, NULL))
 | |
|         luaK_exp2RK(fs, v);
 | |
|       /* else keep numeral, which may be folded with 2nd operand */
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       luaK_exp2RK(fs, v);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Finalize code for binary operation, after reading 2nd operand.
 | |
| ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
 | |
| ** concatenation is right associative), merge second CONCAT into first
 | |
| ** one.
 | |
| */
 | |
| void luaK_posfix (FuncState *fs, BinOpr op,
 | |
|                   expdesc *e1, expdesc *e2, int line) {
 | |
|   switch (op) {
 | |
|     case OPR_AND: {
 | |
|       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luK_infix' */
 | |
|       luaK_dischargevars(fs, e2);
 | |
|       luaK_concat(fs, &e2->f, e1->f);
 | |
|       *e1 = *e2;
 | |
|       break;
 | |
|     }
 | |
|     case OPR_OR: {
 | |
|       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luK_infix' */
 | |
|       luaK_dischargevars(fs, e2);
 | |
|       luaK_concat(fs, &e2->t, e1->t);
 | |
|       *e1 = *e2;
 | |
|       break;
 | |
|     }
 | |
|     case OPR_CONCAT: {
 | |
|       luaK_exp2val(fs, e2);
 | |
|       if (e2->k == VRELOCABLE &&
 | |
|           GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
 | |
|         lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
 | |
|         freeexp(fs, e1);
 | |
|         SETARG_B(getinstruction(fs, e2), e1->u.info);
 | |
|         e1->k = VRELOCABLE; e1->u.info = e2->u.info;
 | |
|       }
 | |
|       else {
 | |
|         luaK_exp2nextreg(fs, e2);  /* operand must be on the 'stack' */
 | |
|         codebinexpval(fs, OP_CONCAT, e1, e2, line);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
 | |
|     case OPR_IDIV: case OPR_MOD: case OPR_POW:
 | |
|     case OPR_BAND: case OPR_BOR: case OPR_BXOR:
 | |
|     case OPR_SHL: case OPR_SHR: {
 | |
|       if (!constfolding(fs, op + LUA_OPADD, e1, e2))
 | |
|         codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line);
 | |
|       break;
 | |
|     }
 | |
|     case OPR_EQ: case OPR_LT: case OPR_LE:
 | |
|     case OPR_NE: case OPR_GT: case OPR_GE: {
 | |
|       codecomp(fs, op, e1, e2);
 | |
|       break;
 | |
|     }
 | |
|     default: lua_assert(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Change line information associated with current position.
 | |
| */
 | |
| void luaK_fixline (FuncState *fs, int line) {
 | |
|   fs->f->lineinfo[fs->pc - 1] = line;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Emit a SETLIST instruction.
 | |
| ** 'base' is register that keeps table;
 | |
| ** 'nelems' is #table plus those to be stored now;
 | |
| ** 'tostore' is number of values (in registers 'base + 1',...) to add to
 | |
| ** table (or LUA_MULTRET to add up to stack top).
 | |
| */
 | |
| void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
 | |
|   int c =  (nelems - 1)/LFIELDS_PER_FLUSH + 1;
 | |
|   int b = (tostore == LUA_MULTRET) ? 0 : tostore;
 | |
|   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
 | |
|   if (c <= MAXARG_C)
 | |
|     luaK_codeABC(fs, OP_SETLIST, base, b, c);
 | |
|   else if (c <= MAXARG_Ax) {
 | |
|     luaK_codeABC(fs, OP_SETLIST, base, b, 0);
 | |
|     codeextraarg(fs, c);
 | |
|   }
 | |
|   else
 | |
|     luaX_syntaxerror(fs->ls, "constructor too long");
 | |
|   fs->freereg = base + 1;  /* free registers with list values */
 | |
| }
 | |
| 
 | |
| } // end NS_SLUA
 |